The respiratory system influences flight mechanics in soaring birds

  • Duncker, H. R. The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb. Anat. Entwicklungsgesch. 45, 1–171 (1971).


    Google Scholar
     

  • King, A. S. in International Review of General and Experimental Zoology Vol. 2 (eds Felts, J. L. & Harrison, R. J.) 96 (Academic, 1966).

  • Maina, J. N. What it takes to fly: the structural and functional respiratory refinements in birds and bats. J. Exp. Biol. 203, 3045–3064 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lockner, F. R. & Murrish, D. E. Interclavicular air sac pressures and vocalization in mallard ducks Anas platyrhynchos. Compar. Biochem. Physiol. A 52, 183–187 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Plummer, E. M. & Goller, F. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch. J. Exp. Biol. 211, 66–78 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Akester, A. R., Pomeroy, D. E. & Purton, M. D. Subcutaneous air pourches in the Marabou stork (Leptoptilos crumeniferus). J. Zool. 170, 493–499 (1973).

    Article 

    Google Scholar
     

  • Rusli, M. A brief report on the development of dorsal air sacs in hand reared Von der Decken’s hornbills (Tockus deckeni). Avian Biol. Res. 13, 87–91 (2020).

    Article 

    Google Scholar
     

  • Daoust, P.-Y., Dobbin, G. V., Ridlington Abbot, R. C. F. & Dawson, S. D. Descriptive anatomy of the subcutaneous air diverticula in the northern gannet Morus bassanus. Seabird 21, 64–76 (2008).

    Article 

    Google Scholar
     

  • Richardson, F. Functional aspects of the pneumatic system of the California brown pelican. Condor 41, 13–17 (1939).

    Article 

    Google Scholar
     

  • Groebbels, F. Der Vogel Vol. I (Borntraeger, 1932).

  • Strasser, H. Ueber die Luftsäcke der Vögel. Gegenbaurs Morphol. Jahrbuch 3, 179–225 (1877).


    Google Scholar
     

  • Biewener, A. A. Muscle function in avian flight: achieving power and control. Philos. Trans. R. Soc. B 366, 1496–1506 (2011).

    Article 

    Google Scholar
     

  • Hamlet, M. P. & Fisher, H. I. Air sacs of respiratory origin in some procellariiform birds. Condor 69, 586–595 (1967).

    Article 

    Google Scholar
     

  • Ulrich, F. in Wissenschaftliche Ergebnisse der deutschenTiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899 Vol. 7, 319–342 (1904).

  • Brackenbury, J. H. Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir. Physiol. 13, 319–329 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bretz, W. L. & Schmidt-Nielsen, K. Bird respiration: flow patterns in the duck lung. J. Exp. Biol. 54, 103–118 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruderer, B., Peter, D., Boldt, A. & Liechti, F. Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152, 272–291 (2010).

    Article 

    Google Scholar
     

  • Lovette, I. J. & Fitzpatrick, J. W. (eds) The Cornell Lab of Ornithology Handbook of Bird Biology (Wiley, 2016).

  • Pennycuick, C. J. Modelling the Flying Bird (Elsevier, 2008).

  • Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Article 

    Google Scholar
     

  • Garde, B. et al. Thermal soaring in tropicbirds suggests that diverse seabirds may use this strategy to reduce flight costs. Mar. Ecol. Progr. Ser. 723, 171–183 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hedrick, T. L., Pichot, C. & de Margerie, E. Gliding for a free lunch: biomechanics of foraging flight in common swifts (Apus apus). J. Exp. Biol. 221, jeb186270 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sapir, N., Wikelski, M., McCue, M. D., Pinshow, B. & Nathan, R. Flight modes in migrating european bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS One 5, e13956 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of descrete characters. Proc. R. Soc. B 255, 37–45 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Felsenstein, J. A comparative method for both discrete and continuous characters using the threshold model. Am. Nat. 179, 145–156 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Charles, J., Kissane, R., Hoerhurtner, T. & Bates, K. T. From fibre to function: are we accurately representing muscle architecture and performance? Biol. Rev. 97, 1640–1676 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tobalske, B. W. Biomechanics of bird flight. J. Exp. Biol. 210, 3135–3146 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Owen, R. in The Cyclopædia of Anatomy and Physiology Vol. 1 (ed. Todd, R. B.) 265–358 (Sherwood, Gilbert and Piper, 1836).

  • Azizi, E., Brainerd, E. L. & Roberts, T. J. Variable gearing in pennate muscles. Proc. Natl Acad. Sci. USA 105, 1745–1750 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, N. P., Barclay, C. J. & Loiselle, D. S. The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88, 1–58 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casler, C. L. The air-sac systems and buoyancy of the anhinga and double-crested cormorant. Auk 90, 324–340 (1973).


    Google Scholar
     

  • Boggs, D. F. Interactions between locomotion and ventilation in tetrapods. Compar. Biochem. Physiol. A 133, 269–288 (2002).

    Article 

    Google Scholar
     

  • Boggs, D. F., Jenkins, F. A. Jr & Dial, K. P. The effects of the wingbeat cycle on respiration in black-billed magpies (Pica pica). J. Exp. Biol. 200, 1403–1412 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawson, A. B., Hedrick, B. P., Echols, S. & Schachner, E. R. Anatomy, variation, and asymmetry of the bronchial tree in the African grey parrot (Psittacus erithacus). J. Anat. 282, 701–719 (2021).


    Google Scholar
     

  • Schachner, E. R. et al. Perspectives on lung visualization: three-dimensional anatomical modeling of computed and micro-computed tomographic data in comparative evolutionary morphology and medicine with applications for COVID-19. Anat. Rec. https://doi.org/10.1002/ar.25300 (2023).

    Article 

    Google Scholar
     

  • Lowi-Merri, T. M., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 165 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowi-Merri, T. M. et al. Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions. Proc. R. Soc. B 290, 20222020 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–491 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

    Article 

    Google Scholar
     

  • Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Uyeda, J. C., Zenil-Ferguson, R. & Pennell, M. W. Rethinking phylogenetic comparative methods. Syst. Biol. 67, 1091–1109 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Revell, L. J. Ancestral character estimation under the threshold model from quantitative genetics. Evolution 68, 743–759 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kissane, R. W. P., Egginton, S. & Askew, G. N. Regional variation in the mechanical properties and fibre-type composition of the rat extensor digitorum longus muscle. Exp. Physiol. 103, 111–124 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boggs, D. F. & Dial, K. P. Neuromuscular organization and regional EMG activity of the pectoralis in the pigeon. J. Morphol. 218, 43–57 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Bates, K. T. & Schachner, E. R. Disparity and convergence in bipedal archosaur locomotion. J. R. Soc. Interface 70, 1339–1353 (2012).

    Article 

    Google Scholar
     

  • Dempsey, M., Maidment, S. C. R., Hedrick, B. P. & Bates, K. T. Convergent evolution of quadrupedalism in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics. Proc. R. Soc. B 290, 20222435 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macaulay, S. et al. Decoupling body shape and mass-distribution in birds and their dinosaurian ancestors. Nat. Commun. 14, 1575 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FOLLOW US ON GOOGLE NEWS

    Read original article here

    Denial of responsibility! Todays Chronic is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – todayschronic.com. The content will be deleted within 24 hours.

    Leave a Comment